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We study critical spreading in Monte Carlo simulations of the two-dimensional contact process~CP! with
quenched disorder in the form of random dilution. In the pure model, spreading from a single particle at the
critical pointlc follows power laws with the critical exponents of directed percolation. With disorder, critical
spreading is logarithmic not power law. Belowlc there is a Griffiths phase in which the time dependence is
governed by nonuniversal power laws. The effects of disorder are also apparent abovelc , in the active phase,
where the relaxation of the survival probability is algebraic, rather than exponential, as in the pure model. Our
results support the conjecture by Bramson, Durrett, and Schonmann@Ann. Prob.19, 960 ~1991!#, that in two
or more dimensions the disordered CP has only a single phase transition.@S1063-651X~96!51010-X#

PACS number~s!: 05.50.1q, 02.50.2r, 05.70.Ln

Phase transitions between an absorbing state~one, that is,
admitting no further evolution! and an active regime occur in
models of autocatalytic chemical reactions, epidemics, and
transport in disordered media. Critical phenomena attending
absorbing-state transitions show a high degree of universal-
ity, characterized rather precisely in studies of the contact
process~CP! and of directed percolation~DP! @1–3#. Since
many-particle systems often incorporate frozen-in random-
ness, it is natural to investigate the effect of quenched disor-
der on an absorbing-state transition. Some time ago, Noest
studied the critical behavior of disordered DP@4#. In this
work we reexamine time-dependent critical phenomena at an
absorbing-state transition in a disordered system. We focus
on the two-dimensional CP, a simple lattice model of an
epidemic@5#. Our primary interest is the effect of disorder on
the spread of the critical process from a seed.

At a critical creation rate,lc , the pure CP exhibits a
second-order phase transition with the same critical expo-
nents as DP@1#. The well-known Harris criterion@6,7# states
that disorder changes the critical exponents ifdn'<2,
where d is the dimensionality andn' is the correlation-
length exponent of the pure model. Sincen'.0.73 for DP in
211 dimensions, we expect quenched disorder to be relevant
in the CP. Indeed, Noest’s simulations of one- and two-
dimensional stochastic cellular automata~belonging to the
DP class! yielded critical exponents quite distinct from those
of DP when the models were modified to incorporate
quenched randomness@4#. A field-theoretic study by
Obukhov @8# yielded qualitatively consistent results.
Marques studied the effects of dilution on the phase diagram
of the CP and related models in a mean-field renormalization
group study@9#. Despite these efforts, the critical exponents
for disordered DP are not known to good precision, due in
part to the slow relaxation attending disorder@10#.

In this paper we report extensive simulations of
time-dependent critical behavior in the two-dimensional di-
luted contact process~DCP!. In the contact process, each site

of the square latticeZ2 is either vacant or occupied by a
particle. Particles are created at vacant sites at a rateln/4,
wheren is the number of occupied nearest neighbors, and are
annihilated at the unit rate, independent of the surrounding
configuration. The order parameter is the particle densityr;
it vanishes in the vacuum state, which is absorbing. Asl is
increased beyondlc51.6488(1), there is a continuous
phase transition from the vacuum to an active steady state;
for l.lc , r;(l2lc)

b. We introduce disorder by ran-
domly removing a fractionx of the sites. That is, for each
( i , j ) PZ2 there is an independent random variableh( i , j )
taking values 0 and 1 with probabilityx and 12x, respec-
tively. The DCP is simply the contact process restricted to
sites withh( i , j )51; those havingh( i , j )50 are never oc-
cupied. @Thus if exactlym neighbors of a given site have
h( i , j )51, the creation rate at that site is at mostml/4.#
Naturally, 12x must exceed the square lattice site percola-
tion thresholdpc50.5927 for there to be any possibility of
an active state, since on finite sets the CP is doomed to
extinction.

Following Grassberger and de la Torre@1#, we study a
large ensemble of trials, all starting from a configuration
very close to the absorbing state: a single particle at the
origin. Forl.lc(x) there is a nonzero probability that the
process survives ast→`; for l<lc(x) the process dies
with probability 1. Of primary interest areP(t), the survival
probability at timet, n(t), the mean number of particles
~averaged over all trials, including those that die before time
t), andR2(t), the mean-square distance of particles from the
origin. At the critical point of the pure CP, these quantities
follow asymptotic power laws,

P~ t !}t2d, ~1!

n~ t !}th, ~2!

R2~ t !}tz. ~3!

The exponents satisfy the hyperscaling relation
4d12h5dz, in d<4 dimensions@1#. Forl,lc , P(t) and
n(t) decay exponentially, while forl.lc ,
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lim
t→`

P~ t ![P`;~l2lc!
b8, ~4!

andn(t);td.
While it is tempting to suppose that the critical point of

the DCP is also distinguished by asymptotic power laws, one
should, in fact, expect power-law relaxation ofP(t) over the
rangelc(0),l<lc(x) @10,11#. In this Griffiths phase the
long-time dynamics are governed by atypical regions in
which the fraction of diluted sites is low, rendering the pro-
cess locally supercritical@12#. Briefly, the argument for
power-law relaxation may be given as follows. The probabil-
ity of the seed landing in a favored region, of linear sizeL,
in which the local density of diluted sites is such that
l2lc,e f f5D, is;exp(2ALd). (lc,e f f is the critical creation
rate for a system with the site density prevailing in this re-
gion.! The lifetime of the process in such a region
;exp(BLd). ~Here the precise forms ofA and B are un-
known, but it is clear that they are positive, increasing func-
tions ofD for D.0.! It follows that at long times

P~ t !;max
D,L

exp@2~ALd1te2BLd!#;max
D

t2A/B;t2f, ~5!

where the last step defines a~nonuniversal! decay exponent
f.

Thus the criterion of power-law evolution, so useful in
locating absorbing-state transitions in nondisordered models,
is not applicable to the DCP@13#. Our method for finding
lc(x) rests instead on an analysis ofP` andn(t). We first
determine the ultimate survival probability for a series ofl
values. PlottingP` versusl yields a preliminary estimate
for lc . To refine this estimate, we observe that forl.lc ,
n(t) must grow monotonically at long times; forl,lc it
must decay. In the pure CP, for example,n(t) grows for
l>lc , so lc is the smallestl supporting asymptotic
growth. In the present case we wish to stay clear of assump-
tions regarding the sign ofdn(t)/dt at critical; we simply
note that growth~decay! rules out a particularl as being
subcritical~supercritical!. Using these conditions to winnow
the set of possible critical values, we eventually find a nar-
row range ofl for which n(t) appearssteadyat long times.

We studied dilutionsx5 0.02, 0.05, 0.1, 0.2, 0.3, and
0.35, on square lattices of 2200 sites to a side, using samples
of from 104 to 23106 trials for eachl value of interest, each
trial extending to a maximum time oftmax<23106. ~As is
usual in this sort of simulation, the time increment associated
with an elementary event — creation or annihilation — is
Dt51/N, whereN is the number of particles. The largest
samples and longest runs were used at or near critical.! An
independent realization of disorder@the variablesh( i , j )], is
generated for each trial. The procedure outlined above yields
the estimates forlc(x) given in Table I. For smallx,
lc(x)'lc(0)/(12x), as predicted by mean-field theory
@9,14#.

Examples ofP(t), n(t), andR2(t) are shown in Fig. 1.
Of note is the slow approach ofP(t) to its limiting value,
P` , in the supercritical regime, where we find that at long
timesP(t)'P`1const3t2y, with y ranging from 1/2~quite
near critical! to 1 ~at largerl). @In cases for whichP(t) has
yet to attain its limit attmax, we use expressions of this form

to estimateP` .] Also evident in Fig. 1 is the power-law
behavior in the subcritical, Griffiths phase. Figure 2~inset!
showsP` versusl for x50.1; the data for other dilutions
look similar. Least-squares linear fits to plots of lnP` vs
ln(l2lc), as in Fig. 2, yield the estimates forb8 listed in
Table I. Forx>0.05 theb8 estimates cluster near unity; the
mean is 0.99~3!, not far from Noest’s result,b51.10(5) @4#.
~Our preliminary results on the stationary density yield
b.1 for x50.35.!

Having located the critical pointlc(x), we turn to the
spreading behavior. Log-log plots ofP(t), and R2(t) at
lc , as shown in Fig. 3, present substantial curvature at late
times, prompting us to ask whether spreading is power law
or slower.~The local slopes of these graphs, commonly em-
ployed to extract estimates for spreading exponents@15#,
here show all three exponents decreasing sharply at long
times.! By contrast, the same data approach linear asymp-
totes when plotted, as in Fig. 4, versus ln(lnt). ~Logarithmic
decay of the survival probability has been observed in pre-
vious, less extensive simulations of the DCP@11#.! For
x>0.1 expressions of the formP(t);(lnt)2a and
R2(t);(lnt)c fit the data over a larger range of times than do
power laws. Fort>tP(x), P(t) is well described by a loga-
rithmic time dependence;tP decreases from about 3500, for
x50.1, to about 60 forx50.35. The approach ofR2 to a
logarithmic growth law typically occurs earlier, at around

TABLE I. Critical parameters from simulations of the DCP.
Numbers in parentheses indicate uncertainties.

x lc b8 a c

0 1.6488~1! 0.586~14!
0.02 1.6850~3! 0.566~7!

0.05 1.7409~1! 0.97~10! 8.6~3!

0.1 1.84640~5! 0.89~4! 4.6~1! 8.1~1!

0.2 2.1080~5! 0.99~4! 3.64~14! 6.3~2!

0.3 2.470~3! 1.07~3! 3.05~15! 5.30~6!

0.35 2.719~2! 1.01~5! 2.72~5! 4.78~5!

FIG. 1. Survival probability P, mean populationn, and
mean-square distance of particles from the originR2, in the di-
luted contact process~dilution x50.3!. 3: l52.50; L: l52.47;
1: l52.40.
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tP/3. For the weakest disorder studied (x50.02), we ob-
serve only~pure! DP-like spreading on the time scale of our
simulations. The somewhat larger dilution ofx50.05 pre-
sents an intermediate case, in which the mean-square spread
followsR2;t1.18 for t,400, andR2;(lnt)c for t.1600, but
the survival probability is better described by a power law,
P;t20.53, for t,tmax543105. ~Note that the exponent es-
timates are fairly close to those of the pure CP.! For these
small dilutions we expect a crossover to the logarithmic
forms at largert, but have been unable to verify this, due to
computational limitations. The rapid decrease intP with in-
creasing dilution can be understood by noting that for weak
disorder, the process must spread over a rather large area
before randomness becomes manifest; for smallx, sizable
regions of the lattice look nearly regular.

Since our results for critical spreading are best character-
ized by logarithmic time dependences, they are formally con-
sistent withd, h, andz all being zero. The powersa and
c in the logarithmic fits forP andR2 vary systematically,
and over a substantial range, as the dilution is varied~see

Table I!. While we are confident that the critical exponent
h.0, it is possible thatn(t);(lnt)b with some smallubu.
More precise determinations oflc and/or of n(t) at long
times are required to resolve this question. The only previous
determination of a spreading exponent we are aware of~for a
model in this class!, is Noest’s result for the spreading di-
mension,d̂51.61(5) for disordered DP in 211 dimensions
@4#. In our notation,d̂511h1d, so our simulations yield
d̂51 ~logarithmic spreading!. @We obtain the same value if
we extract the exponent directly from the data for
n(t)/P(t).# It is worth noting that our studies extend about
10 to 100 times longer in time~to at least 53104, compared
with 43103 in Ref. @4#!, and employ samples two to three
orders of magnitude larger. The latter is of particular signifi-
cance, since rare events appear to dominate the critical be-
havior in disordered systems.

As noted above, the decay ofP(t) should be governed by
a power law in the rangelc(0),l,lc(x); examples of
P, n, andR2 in this regime are shown in Fig. 5. This plot
confirms power-law decay, and shows that the exponentsf
and z governingP and n (;tz) are nonuniversal in this
regime, as expected@10,11#. Whenx50.35, for example, we

FIG. 2. Logarithmic plot of the ultimate survival probability vs
D5l2lc(x) for dilutionsx50.05~1!, 0.2~3!, and 0.35~L!. The
straight lines are least-squares fits to the 6 points, 5 points, and 11
points nearestlc , for x50.05, 0.2, and 0.35, respectively. The
inset showsP` vs. l for x50.1.

FIG. 3. Survival probabilityP, mean populationn, and mean-
square distance of particles from the originR2, in the critical DCP.
3: x50.35,l52.72;L: x50.2,l52.108;1: x50.05,l51.7408.

FIG. 4. The same data as in Fig. 3, but plotted versus ln~lnt!.

FIG. 5. Survival probabilityP, mean populationn, and mean-
square distance of particles from the originR2, in the subcritical
DCP ~Griffiths phase!. 1: x50.45, l53.0; L: x50.35, l52.65;
h: x50.3,l52.40.
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find f'2.2 for l52.4, andf'0.6 for l52.65; the corre-
sponding values ofz are22.0 and20.4. In all cases studied,
however, the asymptotic growth~if any! of R2 seems slower
than power law.~Prior to reaching a plateau,R2 exhibits
logarithmic growth.! Figure 5 includes data forx50.45, i.e.,
a site concentration below the percolation threshold. In this
regime power-law relaxation ofP(t) is expected forany
l.lc(0).

Bramson, Durrett, and Schonmann studied a one-
dimensional CP with disorder in the form of a death rate
randomly taking one of two values~independently! at each
site @16#. They demonstrated that this model possesses an
intermediate phase in which survival~starting, e.g., from a
single particle! is possible, but the active region grows more
slowly than linearly; sublinear growth has also been ob-
served in simulations@17#. ~In the pure CP the radius of the
active region grows}t for any l.lc .) In two or more
dimensions, Bramsonet al. conjectured, there is no interme-
diate phase. Our results for various dilutions support this
conjecture. For example, simulations atx50.1, withl close
to, but slightly abovelc @to be precise,l51.86 and 1.87,
corresponding to (l2lc)/lc50.007 and 0.013, respec-
tively#, showedn(t);t2@~and similarly forR2(t)], consis-
tent with the radius of the active region growing;t. Thus a
sublinear-growth phase, if it exists at all, is confined to a

very narrow range of creation rates. While our model incor-
porates dilution rather than a random death rate, one would
expect such an intermediate phase to be a rather general fea-
ture of disordered contact processes, so that its apparent ab-
sence here argues for the validity of the conjecture.

In summary, we find that quenched disorder induces a
radical change in the critical spreading of the contact pro-
cess. In contrast to the well-known power laws in the pure
CP, we observe logarithmic time dependence. Although our
results are restricted to dilutions 0.05<x<0.35, we expect a
crossover to logarithmic behavior for all 0,x,12pc , al-
beit at very long times for smallx. While we are inclined to
suppose that the DCP is but one member of a universality
class encompassing all disordered models with a continuous
transition to a unique absorbing configuration, studies of
absorbing-state transitions in other disordered models are
needed to verify the universality hypothesis.
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